On the Noise Stabilization of Nonlinear Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Comment on "Adaptive steady-state stabilization for nonlinear dynamical systems".
Instead of the problematic reasoning presented in the work of D. J. Braun [Phys. Rev. E 78, 016213 (2008)], a rigorous argument is provided to show the validity of the adaptive controller proposed by Braun under some particular assumptions. Without these assumptions, this controller may be failed to stabilize the unsteady state, which is numerically shown by specific examples. Also, the choice ...
متن کاملStochastic Stabilization of Dynamical Systems using Lévy Noise
We investigate the perturbation of the non-linear differential equation dx(t) dt = f(x(t)) by random noise terms consisting of Brownian motion and an independent Poisson random measure. We find conditions under which the perturbed system is almost surely exponentially stable and estimate the corresponding Lyapunov exponents.
متن کاملStabilization of dynamical systems by adding a colored noise
Stabilization of dynamics of a system is of great concern to the researchers and practitioners over the years. It is observed that the system is more viscous if one adds a noise in the system. In the present situation the system is perturbed by a (multiplicative) noise and the stable/unstable behavior is examined. It is then observed, one can stabilize or destablize a large class of (autonomous...
متن کاملStabilization Of Nonlinear Dynamical Systems Using Neural Networks
This paper considers the problem of local stabilization of nonlinear dynamical system around an equilibrium point when the state of the system is accessible. The paper deals with the problem whether the equations of the system are known or unknown. The nonlinear controller that can stabilize nonlinear system is established using neural networks. Validity test of the controller obtained is imple...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Japan Society of Mechanical Engineers
سال: 1974
ISSN: 0029-0270,2185-9485
DOI: 10.1299/kikai1938.40.2852